Effects of soil storage on the microbial community and degradation of metsulfuron-methyl.

J Agric Food Chem

National Soil Tilth Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 2150 Pammel Drive, Ames, Iowa 50011, USA.

Published: January 2006

The effect storage had on the microbial biomass in two soils (Trevino and Fargo) was compared to the effect storage had on each soil's capacity to degrade metsulfuron-methyl. Soils were collected from the field and used fresh (<3 weeks old) or stored at 20 and 4 degrees C for 3 or 6 months. The phospholipid fatty acid content of the soils was used to monitor changes in the microbial biomass during storage and incubation in a flow-through apparatus. In both soils, [phenyl-U-14C]metsulfuron-methyl was used to monitor changes in the route and rate of degradation along with 14CO2 evolution (mineralization). Total microbial biomasses in both soils were significantly reduced for soils incubated in the flow-through apparatus, whereas only the Trevino soil's microbial biomass was significantly reduced as a result of storage. The microbial communities of both soils were significantly different as a result of storage as shown by discriminant analysis. In both soils, degradation rate, pathway of degradation, and mineralization of metsulfuron-methyl were significantly affected by storage compared to fresh soil. The half-life of metsulfuron-methyl increased significantly (P < 0.05) in the Trevino soil from 45 days (fresh) to 63 days (stored soil), whereas in the Fargo soil half-lives increased significantly (P < 0.05) from 23 days (fresh) to 29 days (soils stored for 6 months). In both soils, mineralization of [14C]metsulfuron-methyl was significantly (P < 0.05) higher in fresh soils compared to stored soils. The degradation pathways of metsulfuron-methyl changed with storage as evidenced by the loss of formation of one biologically derived metabolite (degradate) in stored soils compared to fresh soils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0512048DOI Listing

Publication Analysis

Top Keywords

storage microbial
8
effects soil
4
soil storage
4
microbial community
4
community degradation
4
degradation metsulfuron-methyl
4
metsulfuron-methyl storage
4
microbial biomass
4
biomass soils
4
soils trevino
4

Similar Publications

Modeling and simulation of distribution and drug resistance of major pathogens in patients with respiratory system infections.

BMC Infect Dis

January 2025

Department of Respiratory Medicine, Anting Hospital of Jiading District, 1060 Hejing Road, Anting Town, Jiading District, Shanghai, 201805, China.

Background: Respiratory tract infections (RTIs) are one of the leading causes of morbidity and mortality worldwide. The increase in antimicrobial resistance in respiratory pathogens poses a major challenge to the effective management of these infections.

Objective: To investigate the distribution of major pathogens of RTIs and their antimicrobial resistance patterns in a tertiary care hospital and to develop a mathematical model to explore the relationship between pathogen distribution and antimicrobial resistance.

View Article and Find Full Text PDF

Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem.

Environ Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:

Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.

View Article and Find Full Text PDF

Effects of nisin loaded chitosan-pectin nanoparticles on shelf life and storage stability of room temperature stored processed cheese.

Food Chem

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:

Processed cheese faces challenges related to short shelf life and susceptibility to microbial contamination during room temperature storage. Nisin, a natural antimicrobial peptide used for food preservation, exhibits limited sustained activity and a narrow antimicrobial spectrum, making its enhancement essential. To address these issues, this study employed electrostatic self-assembly technology to develop chitosan-pectin nanoparticles loaded with nisin (CNP) to improve processed cheese stability at room temperature.

View Article and Find Full Text PDF

This study investigated the effects of thermal pasteurization, thermal pasteurization with additives, and high-intensity ultrasound techniques on the storage of cocoa honey (Theobroma cacao L.) over a 28-day period. Physicochemical analyses revealed significant differences among the treatments, with thermal pasteurization maintaining stability for up to 14 days, pasteurization with additives for up to 28 days, and ultrasound treatment for up to 21 days.

View Article and Find Full Text PDF

Dynamics of chemical profile and microbial community in 3 consecutive years reveal Rhodococcus and Apiotrichum are potential microbes contributing to quality formation of Guang Chenpi.

Food Chem

January 2025

Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:

Currently, there remains a debate regarding the functional microorganisms responsible for the quality formation of Guang Chenpi (GCP). Thus, the metabolite profiles and microbial diversity of GCP samples subjected to natural treatment versus those sterilized via electron beam irradiation were investigated over a three-year period. It was found the main constituents of GCP were influenced both by spontaneous changes and microbial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!