Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors.

J Biomech

Laboratory of Biological Structure Mechanics, Department of Structural Engineering and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.

Published: February 2006

Bioreactors allowing culture medium perfusion overcome diffusion limitations associated with static culturing and provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed to cells will depend not only on the culture medium flow rate, but also on the scaffold three-dimensional (3D) micro-architecture. We developed a CFD model of the flow of culture medium through a 3D scaffold of homogeneous geometry, with the aim of predicting the shear stress acting on cells as a function of parameters that can be controlled during the scaffold fabrication process, such as the scaffold porosity and the pore size, and during the cell culture, such as the medium flow rate and the diameter of the perfused scaffold section. We built three groups of models corresponding to three pore sizes: 50, 100 and 150 microm. Each group was made of four models corresponding to 59%, 65%, 77%, and 89% porosity. A commercial finite-element code was used to set up and solve the problem and to analyze the results. The mode value of shear stress varied between 2 and 5 mPa, and was obtained for a circular scaffold of 15.5 mm diameter, perfused by a flow rate of 0.5 ml/min. The simulations showed that the pore size is a variable strongly influencing the predicted shear stress level, whereas the porosity is a variable strongly affecting the statistical distribution of the shear stresses, but not their magnitude. Our results provide a basis for the completion of more exhaustive quantitative studies to further assess the relationship between perfusion, at known micro-fluid dynamic conditions, and tissue growth in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2004.12.022DOI Listing

Publication Analysis

Top Keywords

culture medium
16
flow rate
12
shear stress
12
micro-fluid dynamic
8
medium flow
8
pore size
8
diameter perfused
8
models corresponding
8
scaffold
6
prediction micro-fluid
4

Similar Publications

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.

Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.

View Article and Find Full Text PDF

Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel.

View Article and Find Full Text PDF

Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.

View Article and Find Full Text PDF

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!