Removal of methylene blue from aqueous solution by fibrous clay minerals.

J Hazard Mater

Laboratoire de Chimie Physique, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakech, Morocco.

Published: July 2006

Kinetics and equilibrium processes of the methylene blue (MB) retention from aqueous solution by a mixture of fibrous clay minerals, which was isolated from a naturally occurring clay, were investigated. For these purposes, the effects of contact time, initial adsorbate concentration, adsorbent content, pH and ionic strength were determined. The results show that the MB retention obeys a pseudo-first order equation and the process is a diffusion controlled solid-state reaction. Moreover, the isotherm data fitted the Langmuir equation and the MB binding process became more energetic with the increase of the adsorbent concentration. In addition, the augmentation of the clay content or the initial MB concentration reduced the adsorption capacity, presumably because of the clay particles microaggregation and/or the occurrence of MB deriving species. On the other hand, it is observed that the MB uptake limit is reduced in low acid pH, particularly below the PZC, as well as in ionic strengthen solutions. These facts are linked to the silanol group protonation and to the reduction of the electrostatic forces induced by the clay particles, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2005.11.048DOI Listing

Publication Analysis

Top Keywords

methylene blue
8
aqueous solution
8
fibrous clay
8
clay minerals
8
clay particles
8
clay
6
removal methylene
4
blue aqueous
4
solution fibrous
4
minerals kinetics
4

Similar Publications

Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs.

Biosens Bioelectron

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!