The siderophores of Bacillus anthracis are critical for the pathogen's proliferation and may be necessary for its virulence. Bacillus anthracis str. Sterne cells were cultured in iron free media and the siderophores produced were isolated and purified using a combination of XAD-2 resin, reverse-phase FPLC, and size exclusion chromatography. A combination of 1H and 13C NMR spectroscopy, UV spectroscopy and ESI-MS/MS fragmentation were used to identify the primary siderophore as petrobactin, a catecholate species containing unusual 3,4-dihydroxybenzoate moieties, previously only identified in extracts of Marinobacter hydrocarbonoclasticus. A secondary siderophore was observed and structural analysis of this species is consistent with that reported for bacillibactin, a siderophore observed in many species of bacilli. This is the first structural characterization of a siderophore from B. anthracis, as well as the first characterization of a 3,4-DHB containing catecholate in a pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-005-1782-6 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.
View Article and Find Full Text PDFDiagn Pathol
December 2024
Department of Pathology, The First People's Hospital of Shizuishan, Affiliated to Ningxia Medical University, Shizuishan, China.
Anthrax is an acute infectious disease caused by Bacillus anthracis, which can infect various animals and humans. Cutaneous anthrax primarily presents as infiltrative, edematous erythema, surface vesicles, hemorrhagic vesicles, and necrotic eschar; some patients may also experience systemic symptoms such as fever and leukocytosis. With economic development and improvements in public health conditions, naturally occurring cases of cutaneous anthrax have significantly decreased, leading to limited reports on the pathological manifestations of this disease.
View Article and Find Full Text PDFMil Med
December 2024
Division of Clinical Research and Medical Management (CRMM), Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, Delhi 110054, India.
Introduction: Anthrax, caused by the bacterium Bacillus anthracis, stands as a formidable threat with both natural and bioterrorism-related implications. Its ability to afflict a wide range of hosts, including humans and animals, coupled with its potential use as a bioweapon, underscores the critical importance of understanding and advancing our capabilities to combat this infectious disease. In this context, exploring futuristic approaches becomes imperative, as they hold the promise of not only addressing current challenges but also ushering in a new era in anthrax management.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA.
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Structural and Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB)-Vrije Universiteit Brussel (VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels 1050, Belgium.
is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!