Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption.

J Mater Sci Mater Med

Biomedical Materials Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, BN2 4GJ, UK.

Published: November 2005

The steady increase in the use of medical implants and the associated rise of medical device infections has fuelled the need for the production of biomaterials with improved biocompatibility. 2-(methacryloyloxyethyl phosphorylcholine) (MPC) based coatings have been used to improve the biocompatibility of a number of different medical devices. Recent studies have investigated the use of a phosphorylcholine modified with cationic charge to encourage specific bio-interaction. Until now the affect of cationic charge incorporation in MPC copolymers on bacterial adhesion has not been investigated. This study attempts to address this by investigating the affect of charge on four different strains of bacteria commonly associated with medical device infections. In addition, the affect of pre-incubating these MPC-copolymers in heparin is also evaluated as this has previously been shown to improve biocompatibility and reduce bacterial adhesion. Bacterial adhesion was assessed by ATP bioluminescence and Scanning Electron Microscopy (SEM). Results suggest that bacterial adhesion generally increased with increasing cationic charge. When samples were however, pre-incubated with heparin a significant reduction in bacterial adhesion to the MPC-based samples was observed. The heparin remained bound and effective at reducing bacterial adhesion to the cationic MPC-based samples even after three weeks incubation in PBS. To conclude, the MPC-based cationic polymer coatings complexed with heparin may provide a promising solution to reduce medical device related infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-005-4755-yDOI Listing

Publication Analysis

Top Keywords

bacterial adhesion
28
cationic charge
16
medical device
12
device infections
12
improve biocompatibility
8
mpc-based samples
8
bacterial
7
cationic
6
adhesion
6
charge
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!