A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Free energy of helix propagation in short polyalanine chains determined from peptide growth simulations of La3+-binding model peptides. Comparison with experimental data. | LitMetric

Molecular dynamics (MD) is, at present, a unique tool making it possible to study, at the atomic level, conformational transitions in peptides and proteins. Nevertheless, because MD calculations are always based on a more or less approximate physical model, using a set of approximate parameters, their reliability must be tested by comparison with experimental data. Unfortunately, it is very difficult to find a peptide system in which conformational transitions can be studied both experimentally and using MD simulations so that a direct comparison of the results obtained in both ways could be made. Such a system, containing a rigid alpha-helix nucleus stabilized by La(3+) coordination to a 12-residue sequence taken from an EF-hand protein has recently been used to determine experimentally the helix propagation parameters in very short polyalanine segments (Goch et al. (2003) Biochemistry 42: 6840-6847). The same parameters were calculated here for the same peptide system using the peptide growth simulation method with, alternatively, charmm 22 and cedar potential energy functions. The calculated free energies of the helix-coil transition are about two times too large for cedar and even three times too large for charmm 22, as compared with the experimental values. We suggest that these discrepancies have their origin in the incorrect representation of unfolded peptide backbone in solution by the molecular mechanics force fields.

Download full-text PDF

Source

Publication Analysis

Top Keywords

helix propagation
8
short polyalanine
8
peptide growth
8
comparison experimental
8
experimental data
8
conformational transitions
8
peptide system
8
times large
8
peptide
5
free energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!