The constitution of the centromeric portions of the sex chromosomes of the red-necked wallaby, Macropus rufogriseus (family Macropodidae, subfamily Macropodinae), was investigated to develop an overview of the sequence composition of centromeres in a marsupial genome that harbors large amounts of centric and pericentric heterochromatin. The large, C-band-positive centromeric region of the X chromosome was microdissected and the isolated DNA was microcloned. Further sequence and cytogenetic analyses of three representative clones show that all chromosomes in this species carry a 178-bp satellite sequence containing a CENP-B DNA binding domain (CENP-B box) shown herein to selectively bind marsupial CENP-B protein. Two other repeats isolated in this study localize specifically to the sex chromosomes yet differ in copy number and intrachromosomal distribution. Immunocytohistochemistry assays with anti-CENP-E, anti-CREST, anti-CENP-B, and anti-trimethyl-H3K9 antibodies defined a restricted point localization of the outer kinetochore at the functional centromere within an enlarged pericentric and heterochromatic region. The distribution of these repeated sequences within the karyotype of this species, coupled with the apparent high copy number of these sequences, indicates a capacity for retention of large amounts of centromere-associated DNA in the genome of M. rufogriseus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456211PMC
http://dx.doi.org/10.1534/genetics.105.047654DOI Listing

Publication Analysis

Top Keywords

centromere-associated dna
8
macropus rufogriseus
8
sex chromosomes
8
large amounts
8
copy number
8
cytogenetic molecular
4
molecular evaluation
4
evaluation centromere-associated
4
dna
4
dna sequences
4

Similar Publications

Non-nucleosomal (CENP-A/H4) - DNA complexes as a possible platform for centromere organization.

bioRxiv

January 2025

Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway.

The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood.

View Article and Find Full Text PDF

Molecular evolution of the mammalian kinetochore complex.

bioRxiv

June 2024

The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609.

Mammalian centromeres are satellite-rich chromatin domains that serve as sites for kinetochore complex assembly. Centromeres are highly variable in sequence and satellite organization across species, but the processes that govern the co-evolutionary dynamics between rapidly evolving centromeres and their associated kinetochore proteins remain poorly understood. Here, we pursue a course of phylogenetic analyses to investigate the molecular evolution of the complete kinetochore complex across primate and rodent species with divergent centromere repeat sequences and features.

View Article and Find Full Text PDF

Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces.

View Article and Find Full Text PDF

In , the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!