DINE-1 (Drosophila interspersed element) is the most abundant repetitive sequence in the Drosophila genome derived from transposable elements. It comprises >1% of the Drosophila melanogaster genome (DMG) and is believed to be a relic from an ancient transpositional burst that occurred approximately 5-10 MYA. We performed a genomewide comparison of the abundance, sequence variation, and chromosomal distribution of DINE-1 in D. melanogaster and D. yakuba. Unlike the highly diverged copies in the DMG (pairwise distance approximately 15%), DINE-1's in the Drosophila yakuba genome (DYG) have diverged by only 3.4%. Moreover, the chromosomal distribution of DINE-1 in the two species is very different, with a significant number of euchromatic insertions found only in D. yakuba. We propose that these different patterns are caused by a second transpositional burst of DINE-1's in the D. yakuba genome approximately 1.5 MYA. On the basis of the sequence of these recently transposed copies, we conclude that DINE-1 is likely to be a family of nonautomomous DNA transposons. Analysis of the chromosomal distribution of two age groups of DINE-1's in D. yakuba indicates that (1) there is a negative correlation between recombination rates and the density of DINE-1's and (2) younger copies are more evenly distributed in the chromosome arms, while older copies are mostly located near the centromere regions. Our results fit the predictions of a selection-transposition balance model. Our data on whole-genome comparison of a highly abundant TE among Drosophila sibling species demonstrate the unexpectedly dynamic nature of TE activity in different host genomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461449 | PMC |
http://dx.doi.org/10.1534/genetics.105.051714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!