Plasmid-mediated gene therapy can restore dystrophin expression in skeletal muscle in the mdx mouse, a model of Duchenne muscular dystrophy. However, sufficient long-term expression and distribution of dystrophin remain a hurdle for translating this technology into a viable treatment for Duchenne muscular dystrophy. To improve plasmid-mediated gene therapy for muscle diseases, we studied the effects of targeted plasmid integration using a phage integrase (phiC31) that can mediate the integration of suitably modified plasmids into the mammalian genome. Using a luciferase expression plasmid, we monitored plasmid gene expression noninvasively in living mice by bioluminescence imaging. Coinjection of an integrase plasmid resulted in 5- to 10-fold higher levels of sustained luciferase expression. Likewise, plasmid-mediated dystrophin expression in mdx muscle was enhanced by integration. Using a combination of dystrophin and luciferase plasmids, we analyzed the functional benefit of dystrophin expression in the dystrophic muscle. The expression of dystrophin slowed the loss of luciferase expression associated with muscle degeneration, and that protection was enhanced by targeted integration of the dystrophin plasmid. In the presence of integrase, dystrophin expression was distributed along a much greater length of individual fibers, and this was associated with increased protection against degenerative changes. These data demonstrate the importance of both the level and distribution of dystrophin expression to achieve therapeutic efficacy, and that the efficacy can be enhanced by targeted plasmid integration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1326153 | PMC |
http://dx.doi.org/10.1073/pnas.0504505102 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia.
Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.
Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.
J Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Front Physiol
December 2024
Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy.
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models.
View Article and Find Full Text PDFInt J Surg Case Rep
December 2024
Department of Pathology of Ibn Roched University Hospital Center, Casablanca, Morocco; Hassan II University in Casablanca, Morocco.
Introduction And Importance: In Morocco, diagnosing Gamma Sarcoglycanopathies mainly relies on histopathological analysis of muscle biopsies due to limited genetic and molecular research access. This study highlights the significance of muscle biopsies and explores potential predictive factors and possible correlation between histopathological abnormalities and clinical phenotypes.
Case Presentation: Muscle biopsies of six patients diagnosed with γ-sarcoglycanopathy were collected over two years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!