We show that MAX1, a specific repressor of vegetative axillary bud outgrowth in Arabidopsis, acts a positive regulator of the flavonoid pathway, including 11 structural genes and the transcription factor An2. Repression of bud outgrowth requires MAX1-dependent flavonoid gene expression. As the flavonoidless state leads to lateral outgrowth in Arabidopsis, our data suggest that a flavonoid-based mechanism regulates axillary bud outgrowth and that this mechanism is under the control of MAX1. Flavonoid gene expression results in the diminished expression of auxin transporters in the bud and stem, and this, in turn, decreases the rate of polar auxin transport. We speculate that MAX1 could repress axillary bud outgrowth via regulating flavonoid-dependent auxin retention in the bud and underlying stem. Because MAX1 is implicated in synthesis of the carotenoid-derived branch regulator(s) from the root, it likely links long-distance signaling with local control of bud outgrowth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1324789PMC
http://dx.doi.org/10.1073/pnas.0509463102DOI Listing

Publication Analysis

Top Keywords

bud outgrowth
24
axillary bud
16
outgrowth arabidopsis
12
regulator flavonoid
8
flavonoid pathway
8
vegetative axillary
8
bud
8
flavonoid gene
8
gene expression
8
outgrowth
7

Similar Publications

Expression of SRY-box transcription factor 17 (Sox17) in the endodermal region caudal to the hepatic diverticulum during late gastrulation is necessary for hepato-pancreato-biliary system formation. Analysis of an allelic series of promoter-proximal mutations near the transcription start site (TSS) 2 of Sox17 has revealed that gallbladder (GB) and extrahepatic bile duct (EHBD) development is exquisitely sensitive to Sox17 expression levels. Deletion of a SOX17-binding cis-regulatory element in the TSS2 promoter impairs GB&EHBD development by reducing outgrowth of the nascent biliary bud.

View Article and Find Full Text PDF

5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.

View Article and Find Full Text PDF

Sugar Transport and Signaling in Shoot Branching.

Int J Mol Sci

December 2024

Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.

The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.

View Article and Find Full Text PDF

Discovery of 4-(2-Phenylethynyl) benzoic Acid as a Potential Potent Chemical Pruner.

Plant Cell Physiol

December 2024

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, P.R. China.

Rocketing labor cost is a major challenge threatening agricultural sustainability and food security worldwide. The replacement of manual pruning of horticultural plants with chemical pruning has long been a goal for saving cost and reducing virus spreading. Here, guided by the structure-function relationship of allelochemical benzoic acid derivatives, we have identified 4-(2-phenylethynyl)-benzoicacid (PEBA) as a highly bioactive compound.

View Article and Find Full Text PDF

The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering.

New Phytol

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.

Article Synopsis
  • Strigolactones (SLs) and gibberellins (GAs) both inhibit rice branching (tillering), but how they interact at the molecular level is not well understood.
  • The transcription factor OsMADS23 is key in linking SL and GA signaling, where its loss leads to fewer tillers and its overexpression promotes more tiller growth.
  • OsMADS23 interacts with the DELLA protein SLENDER RICE1 (SLR1), enhancing each other's stability, and together they inhibit the expression of the SL receptor gene DWARF14 (D14), demonstrating a complex relationship that regulates rice tillering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!