The goal of this study was to investigate the applicability of asymmetrical flow field-flow fractionation-multi-angle light scattering (AsFlFFF-MALS) for size analysis of green fluorescent protein inclusion bodies (GFPIBs). The size distributions of GFPIBs prepared by various culture conditions were determined. For GFPIBs prepared at 37 degrees C the peak maximum hydrodynamic diameter (d(H)) first increased and then decreased with the increase of the induction times in the presence of 0.1 and 2 mM isopropyl-beta-D-thiogalactoside (IPTG). For GFPIBs prepared at 30 degrees C the peak maximum d(H) was constant at about 700 nm irrespectively of the induction times and IPTG concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2005.11.048 | DOI Listing |
J Chromatogr A
July 2006
National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100080, PR China.
The goal of this study was to investigate the applicability of asymmetrical flow field-flow fractionation-multi-angle light scattering (AsFlFFF-MALS) for size analysis of green fluorescent protein inclusion bodies (GFPIBs). The size distributions of GFPIBs prepared by various culture conditions were determined. For GFPIBs prepared at 37 degrees C the peak maximum hydrodynamic diameter (d(H)) first increased and then decreased with the increase of the induction times in the presence of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!