Acetaldehyde does not inhibit glutathione peroxidase and glutathione reductase from mouse liver in vitro.

Chem Biol Interact

Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil.

Published: February 2006

Acetaldehyde, the primary ethanol metabolite, has been implicated in the pathogenesis of alcoholic liver disease, but the mechanism involved is still under investigation. This study aims at the search for direct in vitro effects of different concentrations of acetaldehyde (30, 100 and 300microM) on the activities of glutathione reductase (GR), glutathione peroxidase (GPx) from liver supernatants, and the thiol-peroxidase activity of ebselen. They did not change after pre-incubation with acetaldehyde, which suggests that acetaldehyde does not have any direct effect. Nor were direct effects of acetaldehyde toward thiols, such as dithioerythritol and glutathione (GSH), observed either, even though GSH - measured as non-protein thiols from liver supernatants - were oxidized in the presence of acetaldehyde. In addition, acetaldehyde (up to 300microM) significantly oxidized GSH when incubated in the presence of commercially available gamma-glutamyltranspeptidase (GGT), but not in the presence of glutathione-S-transferase. The interaction between ebselen and GSH was also evaluated in an attempt to better understand the possible link between acetaldehyde and nucleophilic selenol groups. The formation and stability of ebselen intermediaries, produced in the chemical interaction between GSH and ebselen, were not affected by acetaldehyde either. Overall, the acetaldehyde oxidation of hepatic low-molecular thiols depends on mouse liver constituents and GGT is proposed as an important enzyme involved in this phenomenon. Thiol depletion, a phenomenon usually observed in the livers of alcoholic patients, can be related to GSH metabolism, and the involvement of GGT may reflect a molecular mechanism involved in thiol oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2005.11.006DOI Listing

Publication Analysis

Top Keywords

acetaldehyde
11
glutathione peroxidase
8
glutathione reductase
8
mouse liver
8
mechanism involved
8
liver supernatants
8
gsh
6
glutathione
5
liver
5
acetaldehyde inhibit
4

Similar Publications

Discovery of ketene/acetyl as a potential receptor for hydrogen-transfer reactions in zeolites.

Nat Commun

January 2025

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China.

Hydrogen-transfer is the primary process responsible for elevating the degree of unsaturation of intermediates in zeolite-catalyzed methanol-to-hydrocarbon reactions, with olefins serving as the typical receptor and alkanes being produced as the by-product. Intriguingly, the introduction of CO was shown to suppress the selectivity of alkanes and enhance the production of aromatics, yet microscopic understanding of this phenomenon remains elusive. Here, based on ab initio molecular dynamics simulations and free energy sampling methods, we discover a non-olefin-induced hydrogen-transfer reaction in the presence of CO, with ketene/acetyl emerging as a more suitable hydrogen-transfer receptor than olefins.

View Article and Find Full Text PDF

The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.

A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.

View Article and Find Full Text PDF

Wasted bread (WB) has been studied as an alternative ingredient for increasing the sustainable footprint in the beer production chain. There are gaps in the literature on the impact of WB on beer manufacturing. Thus, the objective was to evaluate the addition of WB as a replacement for wheat flakes in a craft beer.

View Article and Find Full Text PDF

About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes.

View Article and Find Full Text PDF

Assessing the impact of device parameters on electronic cigarette aerosol dynamics: Comprehensive analysis of emission profiles and toxic chemical constituents.

Sci Total Environ

January 2025

Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea. Electronic address:

The toxicity of electronic cigarette (EC) aerosol is influenced not only by the type of e-liquid but also by various operational parameters of the device used to vaporize it. In this study, we utilized a flask and heating mantle system, instead of a conventional EC device, to systematically evaluate the effects of EC device operational parameters, including vaporization temperature, airflow rate, and the materials of coils and wicks, on the generated mass of EC aerosol and the production of toxic carbonyl compounds. The results demonstrated that these parameters significantly impact aerosol mass and toxicant composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!