Objectives: In order to reduce curing time for bracket bonding with light-cured composites, manufacturers increase the power density (PD) of light sources. The present study aims at investigating the relationship between PD and shear bond strength (SBS) at short exposure time.
Methods: Stainless steel brackets were bonded to bovine incisors using light-cured adhesive. Six groups of 20 incisors each were exposed to 4s of halogen light with different PD increasing from 500 to 3000 mW/cm(2) in steps of 500 mW/cm(2). Two more groups were exposed to a PD of 3000 mW/cm(2) for 6s (n=15) and 8s (n=19), thus simulating non-available PD of 4500 and 6000 mW/cm(2) for 4s. A halogen lamp with a PD of 1000 mW/cm(2) was used for 40s in the control group (n=15). After storage for 24h at 37 degrees C in water, SBS and adhesive remnant index (ARI) were recorded.
Results: SBS was significantly different among groups (ANOVA, p<0.001). SBS comparable to the control group could only be achieved with a PD of at least 3000 mW/cm(2). An exponential model described the relationship between SBS and PD. The best-fit curve based on this model reached 85% of the highest possible SBS at approximately 4000 mW/cm(2). ARI scores showed that higher PD was associated with better adhesion at the bracket/adhesive interface.
Conclusions: Our findings show the SBS dependence on PD, and thus provide a valuable tool for the development of light-curing systems. An exponential model suggests that SBS enters a region of saturation and cannot be improved significantly by further increasing PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2005.11.006 | DOI Listing |
Int J Dent
January 2025
Department of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
This research aimed to assess the shear bond strength (SBS) of metal brackets bonded to composite veneers using different surface preparations. One-hundred composite disks were divided into 10 different groups whereby each group combines a surface preparation (roughening or no roughening), etching agent (37% phosphoric or 9.5% hydrofluoric acid), adhesive protocol (self-etch or total-etch), and bonding agent (with or without G-Premio Bond).
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
The strength and cooperative energy of chalcogen and dihydrogen bonds in some ABC triad systems of the types XHTe…NCH…HY (X = F, Cl, Br, I, H; Y = Li, Na, BeH, MgH) and FHCh…NCH…HNa (Ch = Te, Se, S) were computed and compared at several levels of theory. All resulting data showed that the strengths of chalcogen (Te…N) and dihydrogen (H…H) bonds increase in the order of H < I < Br < Cl < F, and Be < Mg < Li < Na, respectively. Then, the comparison of data for the FHTe…NCH…HY, FHSe…NCH…HNa, and FHS…NCH…HNa triads indicated that the interaction, stabilization, and cooperativity energies decrease in the order of Te > Se > S.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W Boyd St., Norman, OK 73019, USA.
With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!