Determination of 22 triazole compounds including parent fungicides and metabolites in apples, peaches, flour, and water by liquid chromatography/tandem mass spectrometry.

J AOAC Int

U.S. Environmental Protection Agency, Office of Pesticide Programs, Biological and Economic Analysis Division, Analytical Chemistry Branch, 701 Mapes Rd, Fort George G. Meade, MD 20755-5350, USA.

Published: February 2006

A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed for the determination of 14 parent triazole fungicides and 8 of their metabolites found in apples, peaches, flour, raw water, and tap water. The triazole fungicides chosen for this multiresidue method development project included propiconazole, fenbuconazole and its RH-9129 and RH-9130 metabolites, cyproconazole, difenoconazole, tebuconazole and its HWG 2061 metabolite, hexaconazole, bromuconazole (both stereoisomers), epoxiconazole, tetraconazole, triticonazole and its RPA-404886 and RPA-406341 metabolites, triadimefon, triadimenol, and myclobutanil. Of special concern to the U.S. Environmental Protection Agency were the metabolites common to all triazole fungicides: free triazole, 1,2,4-triazole (T), and its 2 conjugates: triazolylalanine (TA) and triazolylacetic acid (TAA). These metabolites were the primary focus of this project. All samples we cleaned up by a combination of C18 solid-phase extraction (SPE), mixed-mode cationic SPE, and mixed-mode anionic SPE columns. A triple-stage quadrupole mass spectrometer, equipped with electrospray ionization in the positive-ion mode, was used to determine the compounds of interest. T, TA, and TAA were quantitated using isotopically labeled internal standards (IS), in which the 1,2,4-triazole ring had been synthesized by using 13C and 15N (IS_T, IS_TA, and IS_TAA). These isotopically labeled internal standards were necessary to correct for matrix effects. The T, TA, and TAA metabolites were quantitated at the 25-50 parts-per-billion (ppb) level in food commodities and at 0.50 ppb in water. Recoveries were 70-101% from apples, 60-121% from peaches, 57-118% from flour, 75-99% from raw water, and 79-99% from tap water.

Download full-text PDF

Source

Publication Analysis

Top Keywords

triazole fungicides
12
fungicides metabolites
8
metabolites apples
8
apples peaches
8
peaches flour
8
liquid chromatography/tandem
8
chromatography/tandem mass
8
mass spectrometry
8
raw water
8
tap water
8

Similar Publications

Optimized Metolachlor, Epoxiconazole and Chlorantraniliprole Mixture Analysis for Aquatic Toxicity Testing Using UHPLC-MS/MS.

Bull Environ Contam Toxicol

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.

The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests.

View Article and Find Full Text PDF

The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.

View Article and Find Full Text PDF

Environmental fates of thiophosphate and triazole fungicides in a paddy-dominated basin.

J Hazard Mater

December 2024

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.

Under the widespread use backgrounds of fungicides in paddy-dominated basin, the neglect of fungicide environmental fates may aggravate their pollution risks. By integrating field detection with model simulation, we quantified the loss loads and explored the environmental fates of one thiophosphate and five triazole fungicides. Based on the experimental results, we simulated fungicide loss loads with the coefficient of determination of the verification results greater than 0.

View Article and Find Full Text PDF

The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity.

Arch Toxicol

December 2024

Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.

Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance.

View Article and Find Full Text PDF

Enantioseparation, bioactivity, environmental fate and toxicity of chiral triazole fungicide ipconazole in soil and earthworm.

J Hazard Mater

December 2024

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China. Electronic address:

Ipconazole (IPC) is a chiral triazole fungicide and commonly used for disease control in seeds. This study investigated the bioactivity and potential mechanism of ipconazole against pathogenic microorganisms at the chiral perspective. It explored the accumulation behavior of ipconazole enantiomers within the soil-earthworm system and evaluated its toxic effects on earthworms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!