Functional magnetic resonance imaging and multiple sclerosis: the evidence for neuronal plasticity.

J Neuroimaging

Multiple Sclerosis Center, Department of Neourology, Brigham and Women' Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Published: March 2006

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has emerged as a powerful technique to visualize the localization of cerebral activity in both healthy and diseased brains. BOLD fMRI has been used to assess brain function in a variety of diseases, including multiple sclerosis (MS), and has shown that altered patterns of connectivity are used to recruit more widespread eloquent brain networks engaged in tasks relating to motor activity, sensory and cognitive function, and memory when compared to normal controls. This review will examine the evidence that functional reorganization is a consequence of demyelination and tissue loss in MS that may serve as an adaptive response to limit clinical disability. It remains unclear whether cerebral plasticity is a marker of permanent functional restructuring or a short-term compensatory response to injury. Long-term longitudinal studies that correlate fMRI activity with other MRI markers of disease burden and activity, as well as with clinical measures of disease activity and progression, are badly needed to determine fMRI's relevance to clinical practice and its place as a surrogate outcome measure in MS.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1051228405284093DOI Listing

Publication Analysis

Top Keywords

functional magnetic
8
magnetic resonance
8
resonance imaging
8
multiple sclerosis
8
activity
5
functional
4
imaging multiple
4
sclerosis evidence
4
evidence neuronal
4
neuronal plasticity
4

Similar Publications

This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!