We have previously demonstrated that some neurons in the anterior hypothalamic area (AHA) of rats are tonically activated by endogenous angiotensins and that reactivities of these neurons to angiotensin II are enhanced in 15- to 16-week-old spontaneously hypertensive rats (SHR). To investigate whether the enhanced reactivity of SHR AHA neurons to angiotensin II is secondary to raised blood pressure, we examined whether the enhanced reactivity to angiotensin II also occurs in prehypertensive SHR. We also examined whether reactivities of AHA angiotensin II-sensitive neurons to intracerebroventricular hypertonic saline are enhanced in prehypertensive SHR, since intracerebroventricular injection of hypertonic saline increases the firing rate of AHA neurons via release of angiotensins at AHA neuron levels. Male 4-week-old SHR and age-matched Wistar Kyoto rats (WKY) were used in this study. There was no difference in systolic blood pressure between both rats. They were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Pressure application of angiotensin II onto some AHA neurons increased their firing rate. The basal firing rate of angiotensin II-sensitive neurons was increased in SHR as compared with WKY. The increase of unit firing by angiotenisn II was enhanced in SHR as compared with WKY. Intracerebroventricular injection of hypertonic saline increased the firing rate of AHA angiotensin II-sensitive neurons. The average threshold sodium concentration for the saline-induced increase of neural firing was lower in SHR than in WKY. These findings demonstrate that basal activities and responsiveness to angiotensin II in AHA angiotensin II-sensitive neurons are enhanced in prehypertensive SHR as compared with age-matched WKY. In addition, these findings indicate that central saline-induced activation of AHA angiotensin II-sensitive neurons is also enhanced in SHR. It appears that the enhanced reactivity of SHR AHA neurons to angiotensin II occurs primarily in nature but not secondarily to raised blood pressure in SHR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2005.11.059DOI Listing

Publication Analysis

Top Keywords

angiotensin ii-sensitive
24
ii-sensitive neurons
24
aha neurons
16
aha angiotensin
16
firing rate
16
neurons
13
angiotensin
12
enhanced prehypertensive
12
neurons angiotensin
12
shr
12

Similar Publications

The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Na , the brain's Na sensor, exists.

View Article and Find Full Text PDF

Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite.

View Article and Find Full Text PDF

The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is an oligopeptide of the renin-angiotensin system, and Ang II-induced vascular smooth muscle cell (VSMC) proliferation is an important pathophysiological process involved in atherosclerosis; however, the underlying mechanism remains unclear. Orai1 and Stim1 are the main components of store-operated Ca entry (SOCE), which has an important effect on VSMC proliferation. In the present study, we showed that Ang II-induced human coronary smooth muscle cell (HCSMC) proliferation was associated with increased calcium entry.

View Article and Find Full Text PDF

The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!