Protein oxidation affects the structure of many amino acids. Variants of tyrosine are increasingly important in medical and food sciences. The synthesis of standards is essential for monitoring the disease state of patients with various illnesses and the quality of a number of food products. A method for monitoring standard synthesis of dityrosine and 3-bromotyrsoine from tyrosine using capillary electrophoresis (CE) is presented. Optimum separation was achieved using an isoelectric buffer consisting of 100mM iminodiacetic acid (IDA)+75 mM lauryl sulfobetaine (SB 3-12)+0.02% hydroxypropyl methylcellulose (HPMC) in a 27 cm x 75 microm capillary at 22 kV and 45 degrees C. Using these conditions the tyrosine adducts could be easily separated in less than 4 min. The resolution of the CE method was similar to HPLC separations, but analysis time was distinctly shorter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2005.12.029 | DOI Listing |
Background And Objective: Serum protein electrophoresis (SPEP) plays a critical role in diagnosing diseases associated with M-proteins. However, its clinical application is limited by a heavy reliance on experienced experts.
Methods: A dataset comprising 85,026 SPEP outcomes was utilized to develop artificial intelligence diagnostic models for the classification and localization of M-proteins.
Comput Biol Med
January 2025
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:
An efficient novel approach is introduced to predict the effectiveness of chemotherapy treatment in lung cancer by monitoring the serum N-glycome of patients combined with artificial intelligence-based data analysis. The study involved thirty-three lung cancer patients undergoing chemotherapy treatments. Serum samples were taken before and after the treatment.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.
View Article and Find Full Text PDFProfiles Drug Subst Excip Relat Methodol
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia. Electronic address:
Nateglinide belongs to the meglitinide class of insulin secretagogues. It is used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. Nateglinide is an amino acid derivative of D-phenylalanine that binds to the ATP-sensitive potassium channels in pancreatic beta cells and stimulates the secretion of insulin.
View Article and Find Full Text PDFFood Res Int
February 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:
Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!