We show that a strongly renormalized band of polaronic quasiparticle excitations is induced at the Fermi level of an interacting many-electron system on increasing the coupling of the electrons to local phonons. We give results for the local density of states at zero temperature both for the electrons and phonons. The polaronic quasiparticles satisfy Luttinger's theorem for all regimes considered, and their dispersion shows a kink similar to that observed experimentally in copper oxides. Our calculations are based on the dynamical mean field theory and the numerical renormalization group for the hole-doped Holstein-Hubbard model and large on-site repulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.256401 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA.
Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025.
Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.
View Article and Find Full Text PDFACS Nano
December 2024
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron-phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!