Polaronic quasiparticles in a strongly correlated electron band.

Phys Rev Lett

Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom.

Published: December 2005

We show that a strongly renormalized band of polaronic quasiparticle excitations is induced at the Fermi level of an interacting many-electron system on increasing the coupling of the electrons to local phonons. We give results for the local density of states at zero temperature both for the electrons and phonons. The polaronic quasiparticles satisfy Luttinger's theorem for all regimes considered, and their dispersion shows a kink similar to that observed experimentally in copper oxides. Our calculations are based on the dynamical mean field theory and the numerical renormalization group for the hole-doped Holstein-Hubbard model and large on-site repulsion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.256401DOI Listing

Publication Analysis

Top Keywords

polaronic quasiparticles
8
quasiparticles correlated
4
correlated electron
4
electron band
4
band renormalized
4
renormalized band
4
band polaronic
4
polaronic quasiparticle
4
quasiparticle excitations
4
excitations induced
4

Similar Publications

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Thickness-dependent polaron crossover in tellurene.

Sci Adv

January 2025

Department of Electrical and Computer Engineering and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA.

Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains.

View Article and Find Full Text PDF

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.

View Article and Find Full Text PDF

Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron-phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!