Formation of spontaneous polarization in one-dimensional (1D) structures is a key phenomenon that reveals collective behaviors in systems of reduced dimensions, but has remained unsolved for decades. Here we report ab initio studies on finite-temperature structural properties of infinite-length nanowires of Pb(Zr0.5Ti0.5)O3 solid solution. Whereas existing studies have ruled out the possibility of phase transition in 1D chains, our atomistic simulations demonstrate a different conclusion, characterized by the occurrence of a ferroelectric polarization and critical behaviors of dielectric and piezoelectric responses. The difference is accounted for by the use of depolarizing effects associated with finite thickness of wires. Our results suggest no fundamental constraint that limits the use of ferroelectric nanowires and nanotubes arising from the absence of spontaneous ordering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.247602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!