The collective spontaneous emission of a fully inverted inhomogeneously broadened ensemble of N two-level systems coupled to a single-mode low-Q cavity is investigated numerically using Monte Carlo wave function technique. An intrinsically bi-exponential emission dynamics is found when the time scales of superradiance tau(sr) and inhomogeneous dephasing T2* approximately 1/Deltaomega(inh) become comparable: a fast superradiant is followed by a slow subradiant decay. Experimental configurations using ensembles of quantum dots coupled to optical microcavities are proposed as possible candidates to observe the combined superradiant and subradiant energy relaxation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.243602 | DOI Listing |
Phys Chem Chem Phys
January 2025
Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain.
The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA.
Significant debate surrounds the origin of nonlinear optical responses from cavity-coupled molecular vibrations. Several groups, including our own, have previously assigned portions of the nonlinear response to polariton excited-state transitions. Here, we report a new method to approximate two-dimensional infrared spectra under vibrational strong coupling, which properly accounts for inhomogeneous broadening.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Based on our previous study [Wang et al., J. Chem.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Physics, Korea University, Seoul, 02841, South Korea.
Guided exciton-polariton modes naturally exist in bare transition metal dichalcogenide (TMDC) layers due to self-hybridization between excitons and photons. However, these guided polariton modes exhibit a limited propagation distance owing to the substantial exciton absorption within the material. Here, we investigated the impact of hexagonal boron nitride (hBN) layers on guided exciton-polariton modes in WS multilayers.
View Article and Find Full Text PDFJ Membr Biol
December 2024
Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!