We demonstrate a new scheme for extreme ultraviolet (xuv) Fourier-transform spectroscopy based on the generation of two phase-locked high-harmonic beams. It allows us to measure for the first time interferograms at wavelengths as short as 90 nm, and open the perspective of performing high-resolution Fourier-transform absorption spectroscopy in the xuv. Our measurements also demonstrate that a precise control of the relative phase of harmonic pulses can be obtained with an accuracy on an attosecond time scale, of importance for future xuv pump-xuv probe attosecond spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.223903 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 China. Electronic address:
Non-optically active water quality parameters (NAWQPs) are essential for surface water quality assessments, although automated monitoring methods are time-consuming, include labor-intensive chemical pretreatment, and pose challenges for high spatiotemporal resolution monitoring. Advancements in spectroscopic techniques and machine learning may address these issues. We integrated ultraviolet-visible-near infrared absorption spectroscopy with physical-chemical measurements to predict total nitrogen (TN), dissolved oxygen (DO), and total phosphorus (TP) in the Yangtze River Basin, China.
View Article and Find Full Text PDFThe design of the illumination optics for high numerical aperture (NA) anamorphic extreme ultraviolet (EUV) projection optics is a critical challenge to EUV lithography in advanced technology node. However, the EUV illumination optics design using conventional methods have flaws in illumination efficiency and illumination uniformity due to the limitations of relay configuration and matching method that can only consider one factor affecting illumination uniformity. One-mirror configuration can improve illumination efficiency by reducing the number of mirrors.
View Article and Find Full Text PDFWe theoretically study high-order harmonic generation (HHG) involving an extreme ultraviolet (XUV) pulse and an intense infrared driving field, where the electron is ionized by absorbing a single XUV photon. Using a developed classical-trajectory model that includes Coulomb effects and the improved initial conditions, it is demonstrated that the resulting harmonic emission times match well with those obtained by applying the Gabor transform to data from numerical solutions of time-dependent Schrödinger equations for helium and hydrogen atoms. This confirms a classical HHG scheme under single-photon ionization: The electron, ionized by absorbing one XUV photon, oscillates in the infrared field and may recollide with the parent ion, emitting high-frequency radiation.
View Article and Find Full Text PDFThis erratum corrects the affiliation addresses of authors of our paper [Opt. Express32, 43748 (2024).10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!