Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Analytical calculations and recent numerical experiments have shown that a sizable amount of the mass of our Galaxy is in a form of clumpy, virialized substructures that, according to Diemand et al., can be as light as 10(-6)M(.). In this work we estimate the gamma-ray flux expected from dark matter annihilation occurring within these minihalos, under the hypothesis that the bulk of dark matter is composed by neutralinos. We generate mock sky maps showing the angular distribution of the expected gamma-ray signal. We compare them with the sensitivities of satellite-borne experiments such as GLAST and find that a possible detection of minihalos is indeed very challenging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.211301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!