Thermodiffusion of charged micelles.

Phys Rev Lett

CPMOH, CNRS-Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France.

Published: November 2005

We study diffusion of charged nanoparticles in a temperature gradient and derive the corresponding Ludwig-Soret transport coefficient. Charge effects are found to enhance thermodiffusion by up to 2 orders of magnitude. We show that the inverse Soret coefficient 1/S(T) is a linear function of the colloid density n; the proportionality factor, or second virial coefficient, varies algebraically with inverse salinity, n0(-alpha); the precise value of the exponent alpha depends on the ratio of particle size and Debye length. Our findings compare favorably with experimental observations and provide, without adjustable parameters, a good fit to the data on 3-nm sodium dodecylsulfate micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.208301DOI Listing

Publication Analysis

Top Keywords

thermodiffusion charged
4
charged micelles
4
micelles study
4
study diffusion
4
diffusion charged
4
charged nanoparticles
4
nanoparticles temperature
4
temperature gradient
4
gradient derive
4
derive corresponding
4

Similar Publications

Study on the enhanced 3D printing performance of high internal phase emulsions using protein fibrosis strategy.

Int J Biol Macromol

January 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Soy glycinin amyloid fibrils (11Fs) with different lengths were prepare, and their influence on 3D printing performance of high internal phase emulsions (HIPEs) were investigated. The longest fibril with an average length of 1594.40 ± 135.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

[Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses].

Mol Biol (Mosk)

December 2024

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia.

Molecules were proposed to block the functional cycles of the influenza virus A and SARS-CoV- 2. The blocker molecules efficiently bind inside the M2 and E channels of influenza A and SARS-CoV-2 viruses and block diffusion of H^(+)/K^(+) ions, thus distorting the virus functional cycle. A family of positively charged (+2 e.

View Article and Find Full Text PDF

Hyperballistic transport in dense systems of charged particles under ac electric fields.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli, " University of Milan, via Celoria 16, 20133 Milan, Italy.

The Langevin equation is ubiquitously employed to numerically simulate plasmas, colloids, and electrolytes. However, the usual assumption of white noise becomes untenable when the system is subject to an external ac electric field. This is because the charged particles in the system, which provide the thermal bath for the particle transport, become themselves responsive to the ac field and the thermal noise is field dependent and non-Markovian.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!