Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel atom-molecule conversion technique has been investigated. Ultracold 85Rb atoms sitting in a dc magnetic field near the 155 G Feshbach resonance are associated by applying a small sinusoidal oscillation to the magnetic field. There is resonant atom to molecule conversion when the modulation frequency closely matches the molecular binding energy. We observe that the atom to molecule conversion efficiency depends strongly on the frequency, amplitude, and duration of the applied modulation and on the phase space density of the sample. This technique offers high conversion efficiencies without the necessity of crossing or closely approaching the Feshbach resonance and allows precise spectroscopic measurements. Efficiencies of 55% have been observed for pure Bose-Einstein condensates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.190404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!