Quantum electrodynamics in 2 + 1 dimensions, confinement, and the stability of U(1) spin liquids.

Phys Rev Lett

Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.

Published: October 2005

Compact quantum electrodynamics in 2 + 1 dimensions often arises as an effective theory for a Mott insulator, with the Dirac fermions representing the low-energy spinons. An important and controversial issue in this context is whether a deconfinement transition takes place. We perform a renormalization group analysis to show that deconfinement occurs when N > Nc = 36/pi3 approximately to 1.161, where N is the number of fermion replica. For N < Nc, however, there are two stable fixed points separated by a line containing a unstable nontrivial fixed point: a fixed point corresponding to the scaling limit of the noncompact theory, and another one governing the scaling behavior of the compact theory. The string tension associated with the confining interspinon potential is shown to exhibit a universal jump as N --> Nc-. Our results imply the stability of a spin liquid at the physical value N = 2 for Mott insulators.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.176406DOI Listing

Publication Analysis

Top Keywords

quantum electrodynamics
8
electrodynamics dimensions
8
stability spin
8
fixed point
8
dimensions confinement
4
confinement stability
4
spin liquids
4
liquids compact
4
compact quantum
4
dimensions arises
4

Similar Publications

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.

View Article and Find Full Text PDF

Entanglement and quantum discord in the cavity QED models.

Heliyon

January 2025

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.

We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Gravitational Metrological Triangle.

Phys Rev Lett

December 2024

Fundamentale Physik für Metrologie FPM, Physikalisch-Technische Bundesanstalt PTB, Bundesallee 100, 38116 Braunschweig, Germany.

Motivated by the similarity of the mathematical structure of Einstein's general relativity in its weak field limit and of Maxwell's theory of electrodynamics it is shown that there are gravitational analogs of the Josephson effect and the quantum Hall effect. These effects can be combined to derive a gravitational analogue of the electric quantum metrological triangle. The gravitational quantum metrological triangle may have applications in metrology and could be used to investigate the relation of the Planck constant to fundamental particle masses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!