Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simulation of periodic patterns often suffer from artifacts due to incommensurability of the intrinsic length scale and the system size. We introduce a simple numerical scheme to avoid this problem in finding equilibrium domain morphologies from a Ginzburg-Landau-type free energy. In this scheme, the boundary values are determined only by the local equilibrium condition at the adjacent bulk sites. The scheme is especially advantageous in equilibrating patterns that have two or more characteristic lengths. We demonstrate it using a model of lamellar-lamellar coexistence in block copolymer blends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.72.056707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!