Numerical calculations of vortex flows in Taylor-Couette systems with counter rotating cylinders are presented. The full, time-dependent Navier-Stokes equations are solved with a combination of a finite difference and a Galerkin method. Annular gaps of radius ratio eta=0.5 and of several heights are simulated. They are closed by nonrotating lids that produce localized Ekman vortices in their vicinity and that prevent axial phase propagation of spiral vortices. The existence and spatiotemporal properties of rotating defects, modulated Ekman vortices, and the spiral vortex structures in the bulk are elucidated in quantitative detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.72.056311 | DOI Listing |
Sci Rep
November 2024
Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, SE1 0AA, UK.
Spiral, one of the most well-known functional patterns in nature that can be observed in structures such as the proboscis of lepidoptera and snail shells or as vortices forming in flowing fluids, has long served as a source of inspiration for humans in the creation of numerous spiral-based designs. Double-spiral is a design derived from spirals, which has been previously presented and utilized as a compliant joint. Advantageous properties of double-spirals, such as easily adjustable design, multiple degrees of freedom, reversible extensibility, and tunable deformability make them promising candidates for the development of mechanically intelligent structures that exhibit unique behavior and reach desired functions, such as soft grippers, continuum manipulators, energy-dissipative structures, and foldable metamaterials.
View Article and Find Full Text PDFIn this paper, the circular Bessel Gaussian beams (CBGBs) carrying power-cotangent-phase vortices are firstly introduced, whose propagation dynamics are explored theoretically and experimentally. The number of spiral lobes, rotation direction, rotation angle, and shape of the new type of beam can be flexibly modulated by controlling multiple parameters of power-cotangent-phase vortices. Accordingly, the effect of multiple beam parameters on abruptly autofocusing ability is quantified and compared by using the K-value curve that is described by ratio Im/I, where Im and I correspond to the maximum intensities at different propagation distance and the initial plane, respectively.
View Article and Find Full Text PDFOptical vortices, which are beams with helical wavefronts and spiral phase mismatches, have garnered considerable attention in various fields. In this study, we theoretically proposed and experimentally implemented a simple method for generating first-order optical vortices. To generate first-order vortex beams using the polarization field in the momentum space of photonic crystal slabs, topological half charges are required.
View Article and Find Full Text PDFSci Rep
November 2024
Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain.
In this work, we design and implement a new bifocal diffractive spiral lens within an optical tweezers system. The proposed diffractive optical element coined Kolokaski Kinoform Spiral Lens (KKSL), generates twin optical vortices along the propagation direction. The axial positions, as well as the diameters of the generated vortex beams, are correlated with the Kolakoski aperiodic sequence introduced in the design of the diffractive lens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!