Scaling law of plasma turbulence with nonconservative fluxes.

Phys Rev E Stat Nonlin Soft Matter Phys

Georgian National Astrophysical Observatory, 2a Kazbegi Ave., 0160 Tbilisi, Georgia.

Published: October 2005

It is shown that in the presence of anisotropic kinetic dissipation existence of the scale invariant power law spectrum of plasma turbulence is possible. The obtained scale invariant spectrum is not associated with the constant flux of any physical quantity. Application of the model to the high frequency part of the solar wind turbulence is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.72.046407DOI Listing

Publication Analysis

Top Keywords

plasma turbulence
8
scale invariant
8
scaling law
4
law plasma
4
turbulence nonconservative
4
nonconservative fluxes
4
fluxes presence
4
presence anisotropic
4
anisotropic kinetic
4
kinetic dissipation
4

Similar Publications

The fractional nonlinear Schrödinger equation: Soliton turbulence, modulation instability, and extreme rogue waves.

Chaos

January 2025

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

In this paper, we undertake a systematic exploration of soliton turbulent phenomena and the emergence of extreme rogue waves within the framework of the one-dimensional fractional nonlinear Schrödinger (FNLS) equation, which appears in many fields, such as nonlinear optics, Bose-Einstein condensates, plasma physics, etc. By initiating simulations with a plane wave modulated by small noise, we scrutinized the universal regimes of non-stationary turbulence through various statistical indices. Our analysis elucidates a marked increase in the probability of rogue wave occurrences as the system evolves within a certain range of Lévy index α, which can be ascribed to the broadened modulation instability bandwidth.

View Article and Find Full Text PDF

We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.

View Article and Find Full Text PDF

In this paper, the unified approach is used in acquiring some new results to the coupled Maccari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a restricted region. We provide new results with complicated structures to this model, including hyperbolic, trigonometric and rational function solutions.

View Article and Find Full Text PDF

Evidence of dual energy transfer driven by magnetic reconnection at subion scales.

Phys Rev E

November 2024

School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom and Space Weather Technology, Research and Education Center (SWx-TREC), University of Colorado, Boulder, Colorado 80309, USA.

Article Synopsis
  • The study examines how energy moves within plasma turbulence, focusing on its effects on heating in space and astrophysical environments.
  • It suggests that magnetic reconnection plays a key role in energy transfer, facilitating both downward transfer to smaller scales and upward transfer to larger scales.
  • Utilizing advanced simulations, the research provides solid evidence that magnetic reconnection initiates this complex dual energy transfer process.
View Article and Find Full Text PDF

In space plasmas, large-amplitude Alfvén waves can drive compressive perturbations, accelerate ion beams, and lead to plasma heating and the excitation of ion acoustic waves at kinetic scales. This energy channeling from fluid to kinetic scales represents a complementary path to the classical turbulent cascade. Here, we present observational and computational evidence to validate this hypothesis by simultaneously resolving the fluid-scale Alfvén waves, kinetic-scale ion acoustic waves, and their imprints on ion velocity distributions in the Earth's magnetopause boundary layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!