Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1464-410x.1992.tb15644.xDOI Listing

Publication Analysis

Top Keywords

development leydig
4
leydig cell
4
cell tumour
4
tumour association
4
association clomiphene
4
clomiphene treatment
4
treatment oligozoospermia
4
development
1
cell
1
tumour
1

Similar Publications

Transferrin Receptor 2 (TfR2) is a homolog of Transferrin Receptor 1 (TfR1), involved in regulating intra and extracellular iron levels. Altered iron pathways have been associated with cancer onset and progression; however, their role in canine tumors remains poorly explored. This study investigated TfR2 immunohistochemical expression in non-neoplastic canine testis for the first time and in the most common types of canine testicular tumors: intratubular seminomas (ITSEMs), diffuse seminomas (DSEMs), Leydig cell tumors (LCTs), and Sertoli cell tumors (SCTs).

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution.

BMC Genomics

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.

View Article and Find Full Text PDF

Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone.

Stem Cell Reports

January 2025

Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan. Electronic address:

Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!