A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capillary condensation in cylindrical nanopores. | LitMetric

Capillary condensation in cylindrical nanopores.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Materials Research Institute, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: October 2005

Using grand canonical Monte Carlo simulations, we have explored the phenomenon of capillary condensation (CC) of Ar at the triple temperature inside infinitely long, cylindrical pores. Pores of radius R = 1 nm, 1.7 nm, and 2.5 nm have been investigated using a gas-surface interaction potential parametrized by the well depth D of the gas on a planar surface made of the same material as that comprising the porous host. For strongly attractive situations--i.e., large D--one or more (depending on R) Ar layers adsorb successively before liquid fills the pore. For very small values of D, in contrast, negligible adsorption occurs at any pressure P below saturated vapor pressure P0; above saturation, there eventually occurs a threshold value of P at which the coverage jumps from empty to full, nearly discontinuously. Hysteresis is found to occur in the simulation data whenever abrupt CC occurs--i.e., for R > or = 1.7 nm--and for small D when R = 1 nm. Then, the pore-emptying branch of the adsorption isotherm exhibits larger coverage than the pore-filling branch, as is known from many experiments and simulation studies. The relation between CC and wetting on planar surfaces is discussed in terms of a threshold value of D, which is about one-half of the value found for the wetting threshold on a planar surface. This finding is consistent with a simple thermodynamic model of the wetting transition developed previously.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.72.041602DOI Listing

Publication Analysis

Top Keywords

capillary condensation
8
planar surface
8
condensation cylindrical
4
cylindrical nanopores
4
nanopores grand
4
grand canonical
4
canonical monte
4
monte carlo
4
carlo simulations
4
simulations explored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!