Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential mobility spectrometry (DMS) is a rapidly advancing technology for gas-phase ion separation. The interfacing of DMS with mass spectrometry (MS) offers potential advantages over the use of mass spectrometry alone. Such advantages include improvements to mass spectral signal/noise ratios, orthogonal/complementary ion separation to mass spectrometry, enhanced ion and complexation structural analysis, and potential for rapid analyte quantitation. The introduction of a new ESI-DMS-MS system and its utilization to aid in the understanding of DMS separation theory is described. A current contribution to DMS separation theory is one of an association/dissociation process between ions/molecules in the gas phase during the differential mobility separation. A model study was designed to investigate the molecular dynamics and chemical factors influencing the theorized association/dissociation process, and the mechanisms by which these gas-phase interactions affect an ion's DM behavior. Five piperidine analogues were selected as model analytes, and three alcohol drift gas dopants/modifiers were used to interrogate the analyte ions in the gas phase. Two proposed DMS separation mechanisms, introduced as Core and Façade, corresponding to strong and weak attractions between ions/molecules in the gas phase, are detailed. The proposed mechanisms provide explanation for the observed changes in analyte separation by the various drift gas modifiers. Molecular modeling of the proposed mechanisms provides supportive data and demonstrates the potential for predictive optimization of analyte separation based on drift gas modifier effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac051217k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!