IFN-inducible protein-10 (IP-10/CXCL10) is a potent chemoattractant for activated T lymphocytes and was reported recently to have several additional biologic activities. In this study, the pathophysiologic role of IP-10 in the glomerular visceral epithelial cell (podocyte) was investigated. In cultured podocytes subjected to recombinant IP-10 treatment, the expression of slit-diaphragm (SD) components nephrin and podocin clearly was heightened. Rats that had puromycin aminonucleoside nephropathy and anti-nephrin antibody-induced nephropathy and were subjected to anti-IP-10 function-blocking antibody (anti-IP-10 mAb) treatment displayed a decrease in the protein level of SD components, as well as exacerbated proteinuria. For exploration of the mechanisms of this process, the interaction between IP-10 and the cell-cycle regulatory proteins was investigated. Cultured podocytes subjected to recombinant IP-10 treatment displayed an increase in the protein level of p27(Kip1), whereas the levels of cyclins E and A decreased. The expression of IP-10 and SD components was heightened by the treatment of siRNA of cyclin A, whereas these expressions were lowered by the treatment of siRNA of p27(Kip1). Proteinuric rats subjected to anti-IP-10 mAb treatment displayed a heightened expression of cyclin A from the early phase of the disease, which indicates that the anti-IP-10 mAb treatment exacerbates podocyte injury by disturbing the cell-cycle balance. These results raise the possibility that IP-10 could become a novel therapeutic target in nephrotic syndrome and several diseases with altered cell-cycle balance.

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2004090755DOI Listing

Publication Analysis

Top Keywords

cell-cycle balance
12
anti-ip-10 mab
12
mab treatment
12
treatment displayed
12
ifn-inducible protein-10
8
investigated cultured
8
cultured podocytes
8
podocytes subjected
8
subjected recombinant
8
recombinant ip-10
8

Similar Publications

SUMO-mediated regulation of H3K4me3 reader SET-26 controls germline development in C. elegans.

PLoS Biol

January 2025

Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Sumoylation is a posttranslational modification essential for multiple cellular functions in eukaryotes. ULP-2 is a conserved SUMO protease required for embryonic development in Caenorhabditis elegans. Here, we revealed that ULP-2 controls germline development by regulating the PHD-SET domain protein, SET-26.

View Article and Find Full Text PDF

The protective role of baicalin regulation of autophagy in cancers.

Cytotechnology

February 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.

Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy.

View Article and Find Full Text PDF

Pemetrexed is a folate analog inhibitor for the treatment of non-small-cell lung cancer (NSCLC). Prophylactic supplementation with vitamin B and folic acid reduces hematotoxicity associated with pemetrexed. Metformin, the antidiabetic agent, has been associated with the potential side effect of vitamin B deficiency.

View Article and Find Full Text PDF

The effects of diazepam on sleep depend on the photoperiod.

Acta Pharmacol Sin

January 2025

Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.

Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms.

View Article and Find Full Text PDF

A tunable human intestinal organoid system achieves controlled balance between self-renewal and differentiation.

Nat Commun

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!