We have developed a web-based resource (available at www.ciliate.org) for researchers studying the model ciliate organism Tetrahymena thermophila. Employing the underlying database structure and programming of the Saccharomyces Genome Database, the Tetrahymena Genome Database (TGD) integrates the wealth of knowledge generated by the Tetrahymena research community about genome structure, genes and gene products with the newly sequenced macronuclear genome determined by The Institute for Genomic Research (TIGR). TGD provides information curated from the literature about each published gene, including a standardized gene name, a link to the genomic locus in our graphical genome browser, gene product annotations utilizing the Gene Ontology, links to published literature about the gene and more. TGD also displays automatic annotations generated for the gene models predicted by TIGR. A variety of tools are available at TGD for searching the Tetrahymena genome, its literature and information about members of the research community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1347417 | PMC |
http://dx.doi.org/10.1093/nar/gkj054 | DOI Listing |
Ecol Lett
January 2025
Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany.
Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages.
View Article and Find Full Text PDFRNA Biol
January 2024
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
BMC Biol
August 2024
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
Background: Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution.
View Article and Find Full Text PDFGenome Biol Evol
August 2024
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!