High-risk human papillomaviruses (HPVs) (e.g., HPV-16) cause anogenital and head and neck cancers, and low-risk HPVs (e.g., HPV-6) cause benign hyperproliferative disease. The E7 protein of HPV-16 binds all retinoblastoma tumor suppressor protein (pRB) family members with higher affinity than HPV-6E7. The HPV-16 E7 protein has been reported to target pRB family members for degradation and to immortalize cells. Here we tested the hypothesis that the low-risk E7 protein has an intrinsic ability to decrease expression of pRB family members. First, we introduced a high-affinity pRB-binding site into HPV-6 E7 (6E7G22D) and showed that, in human foreskin keratinocytes, HPV-6 E7G22D decreased the level of pRB protein but not pRB mRNA. Second, we analyzed the ability of wild-type HPV-6 E7 to destabilize the other pRB family members, p107 and p130. HPV-6 E7, like HPV-16 E7, decreased the level of p130 protein. This decrease was inhibited by MG132, a proteasome inhibitor. Binding of HPV-6 E7 to p130 was necessary but not sufficient to decrease the level of p130. Furthermore, the destabilization of p130 correlated with a decrease in the expression of involucrin, a differentiation marker. We suggest that the shared activity of HPV-16 E7 and HPV-6 E7 to destabilize p130 and decrease or delay differentiation may be related to the role of E7 in the HPV life cycle. The added ability of HPV-16 E7 to regulate pRB and p107 may be related to oncogenic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1326189 | PMC |
http://dx.doi.org/10.1073/pnas.0510012103 | DOI Listing |
Tumour Virus Res
December 2024
Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA. Electronic address:
Human papillomaviruses (HPVs) are a diverse family of viruses with over 450 members that have been identified and fully sequenced. They are classified into five phylogenetic genera: alpha, beta, gamma, mu, and nu. The high-risk alpha HPVs, such as HPV16, have been studied the most extensively due to their medical significance as cancer-causing agents.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA. Electronic address:
Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels.
View Article and Find Full Text PDFCancers (Basel)
September 2024
AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan.
Endocrinology
July 2024
Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity.
View Article and Find Full Text PDFDiagnostics (Basel)
April 2024
Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania.
Melanoma, a malignant neuroectodermic tumor originating from the neural crest, presents a growing global public health challenge and is anticipated to become the second most prevalent malignancy in the USA by 2040. The CDKN2A gene, particularly p16INK4a, plays a pivotal role in inhibiting the cell cycle via the cyclin D/CDK2-pRb pathway in certain tumors. In familial melanomas (FM), 40% exhibit CDKN2A mutations affecting p16INK4a, impacting checkpoint G1, and stabilizing p53 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!