Colonies in engineered articular cartilage express superior differentiation.

Med J Malaysia

Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Published: July 2005

In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans.

Download full-text PDF

Source

Publication Analysis

Top Keywords

articular cartilage
16
engineered articular
8
cartilage
7
chondrocytes
5
colonies engineered
4
articular
4
cartilage express
4
express superior
4
superior differentiation
4
differentiation view
4

Similar Publications

Background: Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood.

View Article and Find Full Text PDF

Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

View Article and Find Full Text PDF

Promising LOX proteins for cartilage- targeting osteoarthritis therapy.

Pharmacol Res

January 2025

School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland. Electronic address:

Osteoarthritis (OA) is the most affected joint disease worldwide, touching millions of people every year. It is caused by a progressive degeneration of articular cartilage, causing pain and limited mobility. Among the pathways involved in cartilage homeostasis, "LOX" proteins (referring to three distinct protein families, very often confused in the literature) play a prominent role.

View Article and Find Full Text PDF

Background: Preventing worsening osteoarthritis (OA) in persons with early OA is a major treatment goal. We evaluated if different early OA definitions yielded enough cases of worsening OA within 2-5 years to make trial testing treatments feasible.

Methods: We assessed different definitions of early OA using data from Multicenter Osteoarthritis (MOST) Study participants who were followed up longitudinally.

View Article and Find Full Text PDF

Intra-Articular Injection of Human Bone Marrow-Derived Mesenchymal Stem Cells in Knee Osteoarthritis: A Randomized, Double-Blind, Controlled Trial.

Cell Transplant

January 2025

Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

To assess the impact of a single intra-articular (IA) injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with knee osteoarthritis (OA), a randomized, double-blind, placebo-controlled study was conducted. The study included 24 patients with knee OA who were randomly assigned to receive either a single IA injection of BM-MSCs or normal saline. Changes in the visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS) after IA injection were assessed at 3, 6, 9, and 12 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!