The dynamics of rhythmic movement has both deterministic and stochastic features. We advocate a recently established analysis method that allows for an unbiased identification of both types of system components. The deterministic components are revealed in terms of drift coefficients and vector fields, while the stochastic components are assessed in terms of diffusion coefficients and ellipse fields. The general principles of the procedure and its application are explained and illustrated using simulated data from known dynamical systems. Subsequently, we exemplify the method's merits in extracting deterministic and stochastic aspects of various instances of rhythmic movement, including tapping, wrist cycling and forearm oscillations. In particular, it is shown how the extracted numerical forms can be analysed to gain insight into the dependence of dynamical properties on experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00422-005-0041-9 | DOI Listing |
Risk Anal
December 2024
Department of Electrical Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.
This article presents a planning framework to improve the weather-related resilience of natural gas-dependent electricity distribution systems. The problem is formulated as a two-stage stochastic mixed integer linear programing model. In the first stage, the measures for distribution line hardening, gas-fired distributed generation (DG) placement, electrical energy storage resource allocation, and tie-switch placement are determined.
View Article and Find Full Text PDFAdv Mater
December 2024
Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea.
Additive manufacturing has sought active and interactive means of creating predictable structures with diverse materials. Compared to such active manufacturing tools, current crystallization strategies remain in statistical and passive programs of crystals via macroscale thermodynamic controllers, commonly lacking active means to intervene in crystal growth in a spatiotemporal manner. Herein, a strategy toward active and interactive programming and reprogramming of crystals, realized by real-time tangible feedback on growing crystals by delicately controlling the degree of in-situ, localized photopolymerization of polymeric structures via additive manufacturing is presented.
View Article and Find Full Text PDFAdv Mater
December 2024
Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain.
Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature.
View Article and Find Full Text PDFEJNMMI Phys
December 2024
Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
Background: In the back projection step of the 3D PET reconstruction, all Lines of Responses (LORs) that go through a given voxel need to be identified and included in an integral. The standard Monte Carlo solution to this task samples stochastically the surfaces of the detector crystals and the volume of the voxel to search for valid LORs. To get a low noise Monte Carlo estimate, the number of samples needs to be very high, making the computational cost of the projection significant.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA. Electronic address:
Dysregulated miRNA expression contributes to development of arsenic-induced cutaneous squamous cell carcinoma (cSCC). hsa-miR-186 (miR-186) is overexpressed in arsenical cSCC tissues as well as in preclinical cell line model of arsenical cSCC. Simultaneous miR-186 overexpression and chronic inorganic trivalent arsenite (iAs; 100 nM) exposure transformed human HaCaT cell line preferentially over miR-186 overexpression or iAs exposure alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!