Activation of the mitogen-activated protein kinase (MAPK) cascade after Toll-like receptor stimulation enables innate immune cells to rapidly activate cytokine gene expression. A balanced response to signals of infectious danger requires that cellular activation is transient. Here, we identify the MAPK phosphatase dual specificity phosphatase 1 (DUSP1) as an essential endogenous regulator of the inflammatory response to lipopolysaccharide (LPS). DUSP1-deficient (DUSP1-/-) bone marrow-derived macrophages showed selectively prolonged activation of p38 MAPK and increased cytokine production. Intraperitoneal challenge of DUSP1-/- mice with LPS caused increased lethality and overshooting production of interleukin (IL)-6 and tumor necrosis factor alpha. Transcriptional profiling revealed that DUSP1 controls a significant fraction of LPS-induced genes, which includes IL-6 and IL-10 as well as the chemokines CCL3, CCL4, and CXCL2. In contrast, the expression of the important mediators of endotoxin lethality, interferon gamma and IL-12, was not significantly altered by the absence of DUSP1. These data together demonstrate a specific regulatory role of DUSP1 in controlling a subset of LPS-induced genes that determines the outcome of endotoxin shock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118077 | PMC |
http://dx.doi.org/10.1084/jem.20051753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!