A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide. | LitMetric

AI Article Synopsis

  • Nitric oxide (NO) is linked to inflammation and insulin resistance, but its mechanisms in human fat cells are not fully understood.
  • The study found high levels of eNOS mRNA in certain types of human fat tissue, but little to no iNOS mRNA in non-infected subjects, indicating different expressions in response to inflammation.
  • Despite inducing iNOS mRNA in activated adipocytes, iNOS protein and its effects on insulin-related processes remain undetectable, suggesting NO does not play a role in regulating metabolism in these cells.

Article Abstract

Nitric oxide (NO) has been recognized as a potential mediator of inflammation-induced metabolic alterations, including insulin resistance. However, expression mechanisms and potential roles of endothelial and inducible NO synthases (eNOS and iNOS, respectively) in human adipocytes are poorly understood. In the present study, we aimed to analyze several aspects of NO-related gene expression and metabolite synthesis in basal and inflammation-activated human adipocyte models. eNOS mRNA was highly expressed in omental and to a lesser extent in human subcutaneous adipose tissue biopsies, but not in purified adipocytes, in mesenchymal stem cell (MSC)- and in preadipocyte-derived adipocytes, respectively. Trace amounts of iNOS mRNA were detected in adipose tissue samples of donors with abdominal infection, as opposed to noninfected subjects. Interferon-gamma, in combination with interleukin-1beta or lipopolysaccharide, evoked a transient (4 h < time < 24 h) iNOS mRNA expression in human MSC and preadipocyte-derived adipocytes, respectively. This induction was preceded by cytokine-specific mRNAs. In addition, it was accompanied by an activation of the tetrahydrobiopterin synthesis pathway and by inhibition of peroxisome proliferator-activated receptor-gamma2. In contrast to murine 3T3-L1-derived adipocytes, iNOS protein and NO oxidation products remained undetectable in iNOS mRNA-positive human adipocytes. Accordingly, coadministration of NOS inhibitors (i.e., Nomega-nitro-L-arginine methyl ester, Nomega-monomethyl-L-arginine, and 1400W) had no effects on insulin-mediated glucose uptake and lipolysis. We conclude that, in human adipocytes, endogenous NO is not involved in metabolic regulation during either basal or cytokine-activated conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00374.2005DOI Listing

Publication Analysis

Top Keywords

human adipocytes
16
adipocytes
8
nitric oxide
8
adipose tissue
8
preadipocyte-derived adipocytes
8
inos mrna
8
human
7
inos
5
cytokine-induced metabolic
4
metabolic effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!