The protozoan parasite Entamoeba histolytica ingests microorganisms and mammalian cells. Phagocytosis is essential for cell growth and is implicated in pathogenesis of E. histolytica. Phagocytosis consists of a number of steps including recognition of and binding to ligands on the target cells via a galactose/N-acetylgalactosamine-specific lectin, activation of a signaling pathway leading to cytoskeletal reorganization, and vesicle trafficking, all of which play distinct but coordinated roles in phagocytosis. Recent studies of proteomic analysis of purified phagosomes or affinity-purified Gal/GalNAc-binding proteins using reversed phase capillary liquid chromatography and ion trap tandem mass spectrometry enabled high throughput identification of proteins involved in phagosome biogenesis. These studies provided a list of proteins involved in the pathway and also shed light on the dynamic process of phagosome maturation. These approaches should provide significant insights into molecular mechanisms of phagosome biogenesis and help to elucidate the pathogenesis of this important parasite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arcmed.2005.10.003DOI Listing

Publication Analysis

Top Keywords

insights molecular
8
molecular mechanisms
8
entamoeba histolytica
8
proteomic analysis
8
proteins involved
8
phagosome biogenesis
8
phagocytosis
4
mechanisms phagocytosis
4
phagocytosis entamoeba
4
histolytica proteomic
4

Similar Publications

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

This research seeks to address the gap in past studies by examining the role of the Nrf2 (nuclear factor erythroid 2-related factor 2) and HO-1 (heme oxygenase-1) signaling pathways in hypoxia and the potential effects of alpha-pinene on these factors. Wistar rats were divided into 7 experimental groups (n = 7): 1) control, 2 and 3) groups receiving alpha-pinene 5 and 10 mg/kg (i.p.

View Article and Find Full Text PDF

Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!