Adipogenesis is the process by which undifferentiated precursor cells differentiate into fat laden adipocytes. The nuclear proteins peroxisome proliferator-activated receptors (PPARs) play a central role in adipocyte differentiation. The goals of this study were to identify novel PPARgamma responsive genes and to determine their role in regulating human adipocyte differentiation. Affymetrix profiling of gene expression in human adipocytes identified about 1000 genes that were significantly up-regulated subsequent to induction of differentiation. PPARgamma expression was reduced prior to induction of differentiation using a novel, chemically modified antisense oligonucleotide. Affymetrix microarray profiling of these cells identified 278 statistically significantly down-regulated genes. Eight genes were found to contain previously documented PPARgamma recognition element (PPRE) in their upstream nucleotide (promoter) sequence. Four of these genes are novel and have not previously been characterized. Chromatin immuno-precipitation experiments confirmed the binding of PPARgamma to the PPRE of three of these genes. The ortholog of one of these genes, hypothetical protein FLJ 20920, has previously been reported to be involved in the control of body fat composition in Caenorhabditis elegans. Inhibition of expression of this protein was found to also inhibit differentiation of human adipocytes. MAST/MEME algorithm analysis was used to identify novel commonly occurring sequence motifs in the 5' upstream region of transcripts for subset of down-regulated genes, which were grouped according to their sequence similarities. A number of clusters were identified and the largest cluster contained similar motifs from 26 genes with the literature supporting 7 of the 26 genes as being involved in fatty acid metabolism or PPARgamma interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2005.10.021DOI Listing

Publication Analysis

Top Keywords

human adipocytes
12
genes
11
novel ppargamma
8
adipocyte differentiation
8
identify novel
8
induction differentiation
8
down-regulated genes
8
ppargamma
6
differentiation
5
identification novel
4

Similar Publications

Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.

Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Hypoxia-Preconditioned Adipose Stem Cell Exosomes Promote Adipose Graft Vascular Regeneration via miRNA-126.

Aesthetic Plast Surg

January 2025

Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 15, Changle West Road, Xi'an, 710032, Shaanxi, China.

Background And Objective: Adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASCs-Exos) possess angiogenic potential, which can enhance the retention rate of fat grafts. Hypoxic preconditioning can augment their functionality. However, the optimal conditions for hypoxic preconditioning and the specific mechanisms by which it exerts its effects are not well defined.

View Article and Find Full Text PDF

Obesity is a metabolic disease that is marked by excessive fat accumulation and is objectively defined as a body mass index (BMI) ≥30 kg/m2. Obesity is associated with several other comorbidities, including psoriasis, which is a chronic autoimmune skin disease. Adipocytes produce pro-inflammatory signaling molecules, namely adipokines and classic cytokines, that drive increased inflammation axnd may contribute to the pro-inflammatory pathways driving psoriasis disease pathogenesis.

View Article and Find Full Text PDF

ALG5 downregulation inhibits osteogenesis and promotes adipogenesis by regulating the N-glycosylation of SLC6A9 in osteoporosis.

Cell Mol Life Sci

January 2025

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, China.

Osteoporosis is characterized by decreased bone mass and accumulation of adipocytes in the bone marrow. The mechanism underlying the imbalance between osteoblastogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remains unclear. We found that ALG5 was significantly downregulated in BMSCs from osteoporotic specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!