The effects induced on the discharge of subthalamic spontaneously active neurons by inhibiting the enzyme nitric oxide synthase was studied in two groups of urethane-anesthetized rats. In the first group of animals (n = 10), the activity of subthalamic single units was recorded before and after the systemic administration of 7-nitro-indazole (7-NI, 50 mg/kg i.p.), a selective inhibitor of neuronal nitric oxide synthase. In the second group of rats (n = 15), Nomega-nitro-L-arginine methyl ester (L-NAME), another inhibitor of nitric oxide synthase, was iontophoretically administered while performing single unit extracellular recordings. The activity of most tested spontaneously discharging neurons (8/10) was influenced by 7-NI administration, which always caused a statistically significant decrease in the firing rate of the responsive cells. In contrast, the iontophoretic administration of L-NAME, although influencing many cells (24/32), did not have univocal effects: in fact, 18 cells were inhibited while 6 neurons were excited in a statistically significant manner. We hypothesize that nitric oxide neurotransmission could exert a tonic modulatory influence upon spontaneously discharging subthalamic neurons, with a prevalent excitatory effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2005.11.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!