Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation.

Biophys Chem

Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.

Published: April 2006

The effect of weightlessness on physical and biological systems is frequently studied by experiments in space. However, on the ground, gravity effects may also be strongly attenuated using methods such as magnetic levitation and clinorotation. Under suitable conditions, in vitro preparations of microtubules, a major element of the cytoskeleton, self-organise by a process of reaction-diffusion: self-organisation is triggered by gravity and samples prepared in space do not self-organise. Here, we report experiments carried out with ground-based methods of clinorotation and magnetic levitation. The behaviour observed closely resembles that of the space-flight experiment and suggests that many space experiments could be carried out equally well on the ground. Using clinorotation, we find that weak vibrations also trigger microtubule self-organisation and have an effect similar to gravity. Thus, in some in vitro biological systems, vibrations are a countermeasure to weightlessness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2005.12.001DOI Listing

Publication Analysis

Top Keywords

ground-based methods
8
weak vibrations
8
vibrations trigger
8
trigger microtubule
8
microtubule self-organisation
8
biological systems
8
magnetic levitation
8
experiments carried
8
methods reproduce
4
reproduce space-flight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!