Evaluation of the respiratory elimination kinetics of selenium after oral administration in sheep.

Am J Vet Res

Utah Veterinary Diagnostic Laboratory, 950 E 1400 N, Logan, UT 84341, USA.

Published: December 2005

Objective: To evaluate the respiratory excretion and elimination kinetics of organic and inorganic selenium after oral administration in sheep.

Animals: 38 crossbred sheep.

Procedures: Selenium was administered PO to sheep as a single dose of 0, 1, 2, 3, or 4 mg/kg as sodium selenite or selenomethionine. Expired air was collected and analyzed from all sheep at 4, 8, and 16 hours after administration.

Results: Clinical signs consistent with selenium intoxication were seen in treatment groups given sodium selenite but not in treatment groups given the equivalent amount of selenium as selenomethionine. However, a distinct garlic-like odor was evident in the breath of all sheep receiving 2 to 4 mg of selenium/kg. The intensity of odor in the breath did not correlate with clinical signs in affected animals receiving sodium selenite treatment.

Conclusions And Clinical Relevance: The concentration of selenium in expired air was greater in sheep receiving selenium as selenomethionine than sodium selenite. The concentration of selenium in expired air from sheep receiving high doses of selenium (3 and 4 mg of selenium/kg) was larger and selenium was expired for a longer duration than the concentration of selenium in expired air from sheep receiving low doses of selenium (1 and 2 mg of selenium/kg).

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.2005.66.2142DOI Listing

Publication Analysis

Top Keywords

sodium selenite
16
expired air
16
sheep receiving
16
selenium expired
16
selenium
12
concentration selenium
12
elimination kinetics
8
selenium oral
8
oral administration
8
clinical signs
8

Similar Publications

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Bioremediation Potential of PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly.

Microorganisms

November 2024

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.

Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils.

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!