A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1324794PMC
http://dx.doi.org/10.1371/journal.pbio.0040022DOI Listing

Publication Analysis

Top Keywords

vascular occlusion
8
reversals flow
8
flow
7
blood
5
two-photon imaging
4
imaging cortical
4
cortical surface
4
surface microvessels
4
microvessels reveals
4
reveals robust
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!