Revolution and evolution in the Department of Surgery.

Hawaii Med J

Deparment of Surgery, John A. Burns School of Medicine, USA.

Published: November 2005

Download full-text PDF

Source

Publication Analysis

Top Keywords

revolution evolution
4
evolution department
4
department surgery
4
revolution
1
department
1
surgery
1

Similar Publications

Emergence of synchronization-induced patterns in two-dimensional magnetic rod systems under rotating magnetic fields.

Soft Matter

January 2025

Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.

Article Synopsis
  • The study examines how rod-shaped magnetic colloids form patterns when subjected to a rotating magnetic field, using computer simulations to analyze their dynamics.
  • The research identifies three synchronization regimes that influence how the rods align with the rotating field, based on various factors like the rods' shape and the strength and frequency of the magnetic field.
  • Detailed phase diagrams reveal the intricate relationships among the magnetic field's magnitude, rotation frequency, and the resulting self-organized structures formed by the rods.
View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are intense signals from deep space that last for milliseconds and share some characteristics with pulsars, suggesting they may originate from neutron stars.
  • Despite similarities, FRBs like 20221022A display different patterns in their linear polarization position angle (PA), particularly a 130° rotation that aligns with pulsar behaviors, hinting at magnetospheric origins.
  • This study rules out short-period pulsars as potential sources for FRB 20221022A, supporting the idea that its unique PA evolution fits the rotating vector model commonly used for pulsars.
View Article and Find Full Text PDF

Preclinical Experience Using 4D Intracardiac Echocardiography to Guide Cardiac Electrophysiology Procedures.

J Cardiovasc Electrophysiol

December 2024

Division of Cardiovascular Medicine, Cardiac Electrophysiology Section, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Introduction: Intracardiac echocardiography (ICE) is an essential imaging modality for electrophysiology procedures, allowing intraprocedural monitoring, real-time catheter manipulation guidance, and visualization of complex anatomic structures. Four-dimentional (4D) ICE is the next stage in the evolution of the technology, permitting 360° rotation of the imaging plane, simultaneous multiplanar imaging, and volumetric acquisition, similar to transesophageal echocardiography (TEE). In this study, we report our experience with a novel 4D ICE catheter (NuVision, Biosense Webster) in structural electrophysiology procedures and difficult ventricular ablations in a swine preclinical model.

View Article and Find Full Text PDF

Correlation of lipid hydrolysis, oxidation, and molecular transformation with volatile compound revolution in pork during postmortem wet-aging process.

Food Chem

December 2024

Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China.

Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A (PLA) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05).

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!