IL-2-induced vascular leak syndrome (VLS) is an important mechanism explaining the toxic effects of this cytokine and limiting its therapeutic use. We previously characterized a mouse model of IL-2-induced pulmonary VLS used to demonstrate that NK lymphocytes are involved in early/acute phase VLS (after one IL-2 injection). We also showed that NK cells and polymorphonuclear neutrophils (PMN) are involved in the late/chronic phase of the syndrome (after four daily IL-2 injections). In this study we use our mouse model to evaluate the role played by the IL-2 receptor (IL-2R) in VLS induction. Mouse and human IL-2R are different since the mouse IL-2Rbeta chain does not recognize IL-2. Here, we compare the acute and late VLS responses in human IL-2Rbeta transgenic and C57BL/6 wild type mice. Parameters linked to early phase VLS (bronchoconstriction and PMN mobilization) are enhanced in human IL-2Rbeta transgenic mice. By contrast, parameters used to measure late events (protein leakage and edema) are similar in human IL-2Rbeta transgenic mice and C57BL/6 wild type animals. However, after four IL-2 injections, the cellular content of the bronchoalveolar lavage fluids was different between the two types of animals. This study also characterizes a humanized animal model that could be further used to study human IL-2 activity and side effects in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2005.10.006 | DOI Listing |
Biomolecules
November 2024
MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
Monoclonal antibodies (mAbs) are widely used in cancer therapy but often show limited efficacy for solid tumors. Enhancing anti-tumor activity by fusing cytokines to tumor-targeting mAbs, which specifically activate immune cells within the tumor microenvironment, represents a promising strategy. However, the optimal design and therapeutic efficacy of antibody-cytokine fusion formats remain unclear.
View Article and Find Full Text PDFSci Adv
November 2024
Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany. Electronic address:
The cytokine interleukin-2 (IL-2) is a critical regulator of immune responses, with an especially well-characterized role in regulating T-cell homeostasis. IL-2 signaling involves three distinct receptor subunits: the IL-2Rα (CD25), IL-2Rβ, and IL-2Rγ. The intracellular transduction of IL-2-induced signals is strictly dependent on IL-2Rβ and IL-2Rγ, while the IL-2Rα is not directly involved in signaling.
View Article and Find Full Text PDFJ Immunol
October 2024
Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
IL-7 and IL-2 are evolutionarily related cytokines that play critical roles in the development and expansion of immune cells. Although both IL-7R and IL-2R activate similar signaling molecules, whether their signals have specific or overlapping functions during lymphocyte differentiation remains unclear. To address this question, we generated IL-7R α-chain (IL-7Rα)/IL-2R β-chain (IL-24β) (72R) knock-in mice expressing a chimeric receptor consisting of the extracellular domain of IL-7Rα and the intracellular domain of IL-2Rβ under the control of the endogenous IL-7Rα promoter.
View Article and Find Full Text PDFJ Immunother Cancer
July 2024
Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
Background: Vorinostat (SAHA) is a histone deacetylase inhibitor that has shown clinical efficacy against advanced cutaneous T-cell lymphoma (CTCL). However, only a subset of patients with CTCL (30-35%) respond to SAHA and the response is not always sustainable. Thus, understanding the mechanisms underlying evasive resistance in this cancer is an unmet medical need to improve the efficacy of current therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!