The ability to control the surface properties and subsequent colloidal stability of dispersed particles has widespread applicability in many fields. Sub-micrometer fluorescent silica particles (reporters) can be used to actively encode the combinatorial synthesis of peptide libraries through interparticle association. To achieve these associations, the surface chemistry of the small fluorescent silica reporters is tailored to encourage robust adhesion to large silica microparticles onto which the peptides are synthesized. The interparticle association must withstand a harsh solvent environment, multiple synthetic and washing procedures, and biological screening buffers. The encoded support beads were exposed to different solvents used for peptide synthesis, and different solutions used for biological screening including phosphate buffered saline (PBS), 2-[N-morpholino]ethane sulfonic acid (MES) and a mixture of MES and N-(3-dimethyl-aminopropyl)-N'-ethylcarbodiimide (EDC). The number of reporters remaining adhered to the support bead was quantified after each step. The nature of the associations were explored and tested to optimize the efficiency of these phenomena. Results presented illustrate the influence of the surface functionality and polyelectrolyte modification of the reporters. These parameters were investigated through zeta potential and X-ray photoelectron spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la051833b | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan.
Rare earth elements (REEs) are emerging contaminants rendering potential risks in soils to environmental quality and human health. The causation between their geochemical signatures and contamination levels with parent rocks and soil properties are critical for REEs risk assessments, which are urgently needed globally. Thus, this study aimed to elucidate cause-and-effect among hydrofluoric-acid-digested total and ethylenediaminetetraacetic acid extracted bioavailable soil REEs and their contamination degree evaluated by pollution indices in 268 soil layer (horizon) samples from 50 soil profiles derived from felsic, intermediate, mafic, ultramafic, and sedimentary rocks in Taiwan.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, 87606, USA.
Topology optimization is a powerful technique that utilizes the distribution of material properties along with surface topology as parameters to expand a specified performance. While primarily used as a foundational step in regenerative design for structural mechanics, the general TO framework is also applicable to many of the complex issues in electromagnetics such as frequency agile mode converters. This is considered a difficult parameter to optimize since RF components operate on resonance.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.
Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!