Tyrosine protein kinase activity in renal brush-border membranes.

Biochim Biophys Acta

Département de chimie-biochimie, Université du Québec à Montréal, Canada.

Published: July 1992

Tyrosine protein kinase (TPK) activity was detected in rat renal brush-border membranes (BBM) using poly(Glu80Na,Tyr20) as a substrate. Maximal TPK activity required prior detergent dispersion of the membranes with 0.05% Triton X-100 and the presence of vanadate, a potent inhibitor of phosphotyrosine protein phosphatases, in the phosphorylation medium. Optimal conditions for measurement of TPK activity were 10 mM of MgCl2 and MnCl2, at 30 degrees C and pH 7.0. TPK activity was inhibited by genistein, with a IC50 value of 15 microM, while no inhibition was observed in the presence of 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H7), an inhibitor of serine-threonine kinases. TPK activity was enriched 4-fold in the BBM fraction relative to cortex homogenate. It was co-enriched with BBM enzyme markers, but not with those of the basolateral membrane (BLM). The endogenous substrates of TPK in brush-border and basolateral membranes were determined by Western blot analysis using an antiphosphotyrosine monoclonal antibody (PY20). Various phosphotyrosine-containing proteins were found in the BBM (31, 34, 46, 50, 53, 72, 90, 118 and 170 kDa) and in the BLM (37, 48, 50, 53, 72, 90, 130 and 170 kDa). Addition of exogenous insulin receptor to BBM and BLM increased the phosphorylation of most of the substrates. Solubilization of the TPK activity from BBM with 0.5% CHAPS and subsequent gel filtration on Superdex 75 yielded two peaks of tyrosine protein kinase activity with apparent molecular masses of 49 and 66 kDa. These results provide evidence for a non-receptor TPK activity associated with the renal tubular luminal membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(92)90024-gDOI Listing

Publication Analysis

Top Keywords

tpk activity
28
tyrosine protein
12
protein kinase
12
activity
9
kinase activity
8
renal brush-border
8
brush-border membranes
8
tpk
8
170 kda
8
bbm
6

Similar Publications

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

Thiamine is metabolized into thiamine pyrophosphate (TPP), an essential enzyme cofactor. Previous work has shown that oxythiamine, a thiamine analog, is metabolized by thiamine pyrophosphokinase (TPK) into oxythiamine pyrophosphate within the malaria parasite and then inhibits TPP-dependent enzymes, killing the parasite and . To identify a more potent antiplasmodial thiamine analog, 11 commercially available compounds were tested against and .

View Article and Find Full Text PDF
Article Synopsis
  • Impaired blood flow in the brain due to blood vessel constriction and microthrombi can lead to delayed cerebral ischemia following a subarachnoid hemorrhage (SAH).
  • The overexpression of 12/15-Lipooxygenase (12/15-LOX) is linked to poor early brain injury outcomes, and the study investigates its role in delayed effects after SAH.
  • Results show that inhibiting 12/15-LOX improves brain perfusion and reduces negative outcomes like microvessel constriction and platelet activation, suggesting it could be a key target for treatment after SAH.
View Article and Find Full Text PDF

Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid.

View Article and Find Full Text PDF

Purpose: Significant improvements within radioembolization imaging and dosimetry permit the development of an accurate and personalized pretreatment plan using technetium 99m-labeled macroaggregated albumin (Tc-MAA) and single-photon emission computed tomography (SPECT) combined with anatomical CT (SPECT/CT). Despite these potential advantages, the clinical transition to pretreatment protocols with SPECT/CT is hindered by their unknown safety constraints. This study aimed to address this issue by establishing novel dose limits for Tc-MAA SPECT/CT to enable quantitative pretreatment planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!