A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis. | LitMetric

Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.

Langmuir

Center for Frontier Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju 500-712, South Korea.

Published: January 2006

A three-dimensionally ordered array of close-packed colloidal spheres, a photonic crystal structure in which the refractive index of the medium interstitial lattice in a colloidal crystal spatially changes in the [111] crystallographic axis, is demonstrated. The colloidal photonic crystal structure with refractive index chirping was produced by infiltration of a monomer and organic dopants with a high refractive index into a silica opal, followed by interfacial gel polymerization. The resulting photonic crystal structure has a gradually varying stop band at each different (111) plane in the face-centered cubic (fcc) crystal structure at a normal incidence. This novel structure exhibited optical characteristics that have band-gap broadening by the superposition of stop bands at each plane of the crystal with different dielectric functions. Moreover, the refractive index perturbation in the [111] fcc opal also showed a defect state within a pseudo-photonic band gap. This new type of photonic crystal structure should be useful for the band-gap engineering of photonic-band-gap materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la052071nDOI Listing

Publication Analysis

Top Keywords

crystal structure
24
photonic crystal
20
structure refractive
12
colloidal photonic
8
crystal
8
refractive chirping
8
[111] crystallographic
8
crystallographic axis
8
structure
7
photonic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!