Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ecological impact of antibiotic resistance in the absence of selective pressure has been poorly studied. We assessed the carriage of tetracycline resistance genes, persistence in the microbiota, fecal population counts and virulence factor genes in 309 commensal, intestinal Escherichia coli strains obtained from 128 Swedish infants followed during the first year of life with regular quantitative fecal cultures. No infant was given tetracycline, but 25% received other antibiotics. Tetracycline resistance was identified in 12% of strains, all of which carried either tet(A) (49%) or tet(B) (51%) genes. Resistance to other antibiotics occurred in 50% of tet(A)-positive strains, 42% of tet(B)-positive strains and 13% of tetracycline-sensitive strains. However, colonization with tetracycline-resistant strains was unrelated to treatment with antibiotics. Strains that were tet(B)- or tet(A)-positive carried the genes for P fimbriae and aerobactin, respectively, more often than susceptible strains. Tetracycline-resistant and -susceptible strains were equally likely to persist among the intestinal microbiota for > or = 3 weeks and had similar population numbers. However, when a resistant strain and a susceptible strain colonized a child simultaneously, the resistant variety showed lower counts (P = 0.03). In cases of long-term colonization by initially tetracycline-resistant E. coli strains, loss of tet genes occurred in 3 of 13 cases with variable effects on population counts. The results indicate that there is limited pressure against the carriage of tet genes in the infantile gut microbiota even in the absence of antibiotics. Resistant strains may possess colonization factors that balance the cost of producing resistance elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1346771 | PMC |
http://dx.doi.org/10.1128/AAC.50.1.156-161.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!